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PRINCIPLES'OF DESIGNING DISTRIBUTED NETWORKS

by
N. Ikeno

ABSTRACT

This article describes the synthesis of distributed networks with
prescribed characteristics along with the method of approximation of their
characteristics. The networks consist only of cascade and parallel connections
of distributed elements of equal lengths. In such networks with elements of
equal lengths, similar treatment as in lumped networks would be possible with
A\ =jtan (w £/2 fo) as a variable. But here some special features are encounter-
ed with, which are very different from those in lumped networks; i.e., A = +1
will be transmission zeros, and as for network configuration, use of close
coupled coils and series elements should be avoided. In spite of such restrict-
ions on construction, an important conclusion was obtained, that a transmission
function is always realizable which has transmission zeros only on the imagin-~
ary axis and at +1 on the complex- A- plane. The proof is presented, accompan-
ied by the manners of construction, approximation of a characteristic with func-
tions having poles at A = + 1, especially procedures to obtain Tchebycheff
characteristics and severalxl design examples. Some citation is also made on

the construction of 2-terminal distributed networks.
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1. PREFACE

It was very recent that the theory of designing networks was established
for distributed networks that enables the realization of prescribed behaviors,
which showed a remarkable achievement in lumped networks. There might
have been ideas to substitute a lumped network by its direct corresponding
distributed one; but here the first difficulty experienced is the series impedances,
which, in case of parallel wires, would constitute unbalanced elements and may
be subject to undesirable radiation, or, in case of a coaxial structure, require
double-shielded elements. Another difficulty may appear at the connecting
parts of separate sections, and some amount of phase shift would be inevitable.

Therefore the direct conversion can only be a rough approximate one.

On the other hand, according to a newly developed theory, no series
elements are needed, and the connecting parts are realized easily as cascade
elements, leading to excellent characteristics. It was Richards] that gave a
clue to the theory. He presented the famous "Key Theorem", which was
applied to a design principle by the author, 15 16 17 followed by papers by
Matsumoto and Hatoriz, Kuroda3 8. Ozaki4, Kasahara and Fu_jizlawa5 6.

It may be noteworthy that the theory has been developeci mostly by our
countrymen. This article is a brief record of achievement made by the

writer.

2. PRELIMINARY CONSIDERATIONS

As stated in the preceding section, the networks treated in this article

have following features:

(i) They are constructed only by cascade and parallel connections of elements.

In other words, there is a restriction that no series connection is
permitted, in a sharp contrast with the lumped networks. Instead, cascade
connections are introduced which may bring about new possibilities. Let us
add two more restrictions so as to make the theory simpler.

(ii) The electrical length of all the elements are equal.

(iii) Any line that branches off from the other never joins the original.
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The writer gives the name "tree-and-branch"” type networks that satisfy
these 3 conditions. Most of the synthesis described later is concerned with
this tree-and-branch type networks. But since this status restricts the
characteristics obtainable to a certain amount, some closed loops will also

be permitted if necessary, under the condition below:
(iii)' Any loop consists of even number of elements.

The networks will be called "normal'", that satisfy the conditions (i), (ii)
and (iii)'. But in this article only those closed loops are needed, that consist

of 4 elements. They are termed "unit loops".

Now, let the frequency range of interest be from 0 to fo’ and let a unit
element be a line with a length equal to a quarter of the wave length at fo.

The frequency character of a normal network will be periodical with a period

A - fo’ fo). Therefore fo should be so chosen that the periodicity is of a

desirable one. Here define a2 complex parameter

A-jtan g (1)

and transform the interval ( - fo' fo) into ( - j 00, j c0) on the imaginary axis.
Then a distributed network can be treated in a similar way as in lumped

networks.

Consider a unit element of characteristic admittance a, and rewrite the

well-known transmission line equations in A\, we have (Fig.1).

/ n 1 1 A |
" f-L‘ -V, Vl-"/l_a-_: V,+ as/l"-l"'lz' I (Z)
oAy, 1 I '
Fig. 1l A unit element Lo o pVet iph l
It follows that the cascade matrix has the form
A
1 (! oa \ (3)
vi-p ai 1)
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As is evident from Eq.(2) the input admittance of the line with the other
end short- or open-circuted will be, respectively,

Yn :%, ' Ylu = ai

(4)
which are formally of the same form as in the case of an inductance or
capacitance in lumped networks. Hereafter, they will be called by the same
names or represented in the same notations as in lumped networks. Thus,

the presence of two elements corresponding to fundamental elements in
reactance networks would make it possible to construct any reactance networks
without mutual inductances if series connections could be permitted. The
series connections can only be admitted in the intermediate stage of synthesis,

but should be completely excluded in the final networks obtained.

As already stated, the new "cascade" elements will be introduced into
distributed networks. A cascade elermnent is essentially one with 4 terminals
like a gyrator or a pair of coupled coils. Since its cascade matrix is given

in Eq.(3) as A » oo it reduces to

0

o QIN.

, (5)

1a
which is of the same form as that of a gyrator except the fact that its entities
are imaginary (of course it can never by nonreciprocal). This is the reason

why a cascade element plays an important role.

Suppose that the cascade element is terminated in an admittance YZ(K )
the input admittance will be

Yg"" iq

Yid)=a a+ Y. i (6)

I YZ(X) is a rational function, then YI()‘) will also be a rational function.
It will be understood that the two-terminal admittance of a "tree-and-branch"
network is always a rational function of A\. As shown later, a general normal
network has a rational admittance. Hereafter it is assumed that any two-

terminal admittances are rational.
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As seen from Eq.(6) the degree of Y1(7\) will be 1 higher than that of
YZ(X), in general. But when Yz(-l) >0, a may be so chosen that

(I.:'_ YZ(—-—]_, (7)

In that case the numerator and denominator of the right hand side
of Eq. 6 have a common factor 1 + A, and YI(X) and YZ(X) will be of the
same degree after Yl()\) is made into a prime form. Let us say, as seen
in this case, that a network is " degenerate” if it contains cascade elements

that do not effect the degree of the input admittance of the network.

Let A\ = 1in Eq.(6) one obtains

Yi(l)=a ' (8)

and thérefore the condition Eq. 7 may also be written Yl(l) = YZ(- 1).

Furthermore, from Eq.(6) one obtains

Y|(1):Yu‘ -1
(8a)
{Y1(1)+ Yl(_l)} {Y|I1I_Y2(""1)} =0
from which it follows that, in a nondegenerate case,
Y, D+Y(=1)=0 (9)
Solve YZ(X) from Eq. (6) one will obtain
V(=AY (1) (10)

Vi s Dy )y

Here holds the following important theorem.
(Theorem) If Yl()») is any positive real function, YZ(X) given by Eq.(10)

is also positive real, and if

YiD+Y(~1)=0 (10a)

then the degree of YZ()\) is 1 degree below that of Yl()\ ), and if not they are

of the same degree.
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This is the famous "Key Theorem" due to Richardsl, and can be proved
from the properties of positive real functions. The proof will be made easier
by the use of the properties of echo transmission coefficientslz. According
to this theorem, any distributed admittance Yl()\) can always be presented
as a cascade of a unit element of characteristic admittance Yl(l) and the
admittance YZ(X) given by Eq.(10). Specifically, if YI(X) is a Foster, than
Eq.(9)always holds and degeneracy does not occur, so that the degree

reduction takes place on each separation of unit elements. Hence follows
the corollary:

(Corollary) A reactance two-terminal network can be synthesized by

unit elements of the same number as its degree.

This simple configuration is a specific feature of distributed networks.
In a lumped network, a similar configuration, cascade of all-pass networks,

may also be possible but the number of elements required will be twice the
degree .

Here will be described certain important properties pertaining to Eq. (10):
Let YI(X) be a reactance, and its zeros and poles at finite frequencies be in
the order

0oy iy oo <o, L o (10b)

as shown in Fig. 2 (A). Say, for instance, w) is a zero and w,a pole, then
Yy jo) = —jo, ¥V (1), (10¢)

FY(1)

oy

Yo(jon) = (104)

The former is a negative imaginary, and the latter has a positive imaginary.
A zero of Y?(X) should come between these two points. Similar relations hold
for poles of YZ(X ) Thus, let the zeros and poles of YZO‘) be o <w < wé < oo

1
< wr'1 1 < o, then these points will be arranged alternately in the following way:

0(\‘-""("’l'<"’z<mz'< """ <oy 1 g < v (10e)
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(A1 ' / /
(ATRN)

WA
N

Fig. 2. Shifting of zeros and poles of a reactance

This fact may also be interpreted as below. Zeros {or poles) of Yl(k)
will, through the transformation Eq.(10) be shifted upwards, but cannot exceed
the adjacent pole (or zero). The higher of the highest of zeros and poles will

go to infinity.

The properties of cascade elements have been made pretty clear. Here
the writer would like to present a rough view of parameters used in specifying
4 - terminal networks, for the convenience of the readers who are not

accustomed with network theory.

A cascade matrix (hereafter called K-matrix) is usually written in the

following form:

(A B)
K=¢c bl (11)

From the condition of passivity and reciprocity, there is a relation

AD—BC | (12)
In the next place, as for the admittance matrix (Y - matrix).
Yu Y,
Y- 1" i (13)

4
Y1| Y-n !
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there is a relation le = YZI’ and the relations between Y - matrix and

K - matrix are

D A

1 .
Y= B’ Y= B’ Yi=- B (14)

Impedance matrices are not used in this article, but the open~circut

admittances YlO' YZO may be used in their places:

.1 _¢C 1 ¢
Y 0= = P '
1 Z“ A: Y-u Z22 3 D . (15)

The input admittance for unit admittance termination is

_C+D

Y= A+B

— — Yl'lz . Y'.!u""‘l
=Yu—p =il (16)

Normalization of terminating admittance to unity does not lead to loss

of generality. Therefore all terminating admittances are considered to be 1

except for the case of matching networks.

To specify a 4 - terminal network, its K-matrix or Y~-matrix will suffice.
Sometimes Y11 and Y10 (or Y22 and YZO) will be given, or only the input
impedance will be given. In the former cases, the only undertermined are
the ideal transformers at the output ends, whereas in the latter cases, an
all-pass in the output terminal will give no change, but the amplitude-trans-
mission characters are completely determined, and it will lead to a sufficient

answer to the problems of filter design, etc.
3. PROPERTIES OF DISTRIBUTED 4 - TERMINAL NETWORKS.

If a unit element is considered to be a 4 - terminal network, its K-matrix
will have a form Eq. (3) The K-matrix of a network consisting of n such
elements (called a "bar" network) should be

m a, LX) Qg . _ N 1 U|(A)' “|(A)\| ’ (17)
' ‘ K= (V1) [uu(l) v h)J

Fig. 3. A bar network
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since it is a product of n matrices of the form Eq.(3). Here v 1()\ )y Vv Z(X)
are even polynomials with constant terms 1, ul()\ ) uz()s) are odd polynomials.
If nis odd, then v, and v, are of degree n, u; and u, are of degree n ~ 1;
if n is even, vice versa. The degree of the K-matrix is defined to be the highest
of the degrees of the four polsrnomials. Among these four polynomials there

is a relation

01(1)02(1)-"141(1)1!?’1) ENS SV ESLE (18)

which is derived from Eq.(12). Entries of Y-matrix may be represented by

the polynomials

Y (= v 4) - y .. mld)
n(d) 10,4 " Yul &y - n',())'
Y2y = — W1=2" ~ (19)
w1

It is a specific feature of a distributed network that YIZ(X) has a factor
(J—IT)\—z)n. If the entries of a Y-matrix have the form Eq.(19) and if v l(k ),
vz(k) are polynominals with constant terms 1, and if Y”(X ), YZZ(X) are
reactance functions of degree n, and if a function ul(X) exists that satisfy
Eq.(18) then the network can be realized as a bar network. The last condition
above cited may be expressed that all determinants of re.sidues of poles of
Y-matrix should be zero (residues of poles should be perfectly compact, by
Ozaki's words).

One more thing should be added in connection with a bar network. Of the
4 polynominals, if one odd and one even polynomials are known, the remaining
two polynomials are uniquely determined. That is, if one of Yll’ YZZ’ YOl
or Y02 is known, the network will be perfectly determined. The reason is
simple, let, say, Y22 is given, then since it i8 a reactance of degree n, it
can be realized by a cascade connection of n-elements. Put two terminals
at the very end, and the network is obtained, because there can be no other
networks that have the same Yzz(x ).
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Let us go a step further, into a network whose junctions have open~circuit

elements in shunt, as shown in Fig. 4. Such a network is called a simple

Fig. 4. A simple open-branch network

open-branch network. The K-matrix of a shunt element with characteristic
admittance b will be
1 O.J.
b 17 (20)
Therefore the K-matrix of a simple open-branch network will be represented
as a product of K's of the form Eq. (3)and K's of the form Eq. (20). Its form is
the same as Eq.(17), where the constant terms of v 1()\) and vZ(X) are 1,
relation Eq. 18 also holds, and the entries of K-matrix have the form Eq. (19).
The only difference is that in the present case, the degree of K-matrix is
higher than n. Let the number of shunt elements be v, then the total number
of elements is n + v, and the degree of K-matrix can be n + v at most. This
may not always be equal ton + v. For ins.tance, in case Y11 and Y10 have
poles at X\ =0, the addition of shunt element A b at the input terminal will

have no effect on the degrees of Y., and Y In these cases, there exist

11 10°
equivalent networks with a number of elements equal to the degree.

A more general 4-terminal network shall be considered. Take the case

shown in Fig. 5, where the shunt elements are replaced by more general

F

Fig. 5. A tree-and-branch network
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reactances. Ab in Eq. (20)should be replaced by the corresponding reactances,
and K-matrix will take, in general, a form
1 Ul(A) "1(1.)“

N N |
(V14l")'f(1)|'”2§‘) o A) (21)

where v 1()\ ), vz(x )s wz(X) and f(k) are even polynomials, and ul(k) is an
odd one. Among the constant terms of v l(x Y vz()\) and f(A), there are the

following relations

(0, £10)>0,  0,00) = £0)>0. (22)

Therefore, amond 4 entries A, B, C and D of K-matrix, only C can have
a pole at A =0, and it can be simple at most. If all the other ends of the
shunt lines are open-circuited, even this pole vanishes and K-matrix take the

following form

. 1 e @) ;
(VI=EYFD | (2) vyt : (23)

It should be noted here that the constan: terms of vl(X ) vz(k) and f(\)

become equal. Call such a network an "open-branch" network.

It is needless to say that the relation

‘ 24
n(4) va(A)—uy(d) "”ﬁ“ = (1=2*) fid ), (24)
holds for Eq.(21), and the relation
. (25)
0 A 0 A) = Ayl Ay - (1 - YRy
for qu (23)1
Y-matrices will be found to have the form
o (A o nth
Yuth=yay: Yeh= (26)
i !
Yoy = — YA=2 S0

u, ()
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Fig. 6. A network with a loop

Roots (zeros) of f(\) are poles of shunt admittances and lie only on the

imaginary axis, as they should be.

Next, the case will be considered, which has a closed loop or loops. A
simple example is shown in Fig. (6), which conaists of twotree-and-branch
networks in parallel. Its Y-matrix is the sum of those of constituent networks;

and so Yll(X) and YZZ(X) are evidently rational reactances, and YIZ(X) has the
following form

WD b _ (VIEEY foay
Vil - wi(d)y 7 10,(4)’

- et 27
- (V1= () iy )+ (V12" oy a0 a0} . (27)

W Ava LAy
where it is taken that £'>1,

The number of elements building up a closed loop is even, so that the
sum of £ and{', numbers of cascade elements in both constituent networks,
is even, and their difference is also even. Therefore the expression in
{ } in Eq. (27)is a rational polynomial. It follows that the entries of Y-matrix

for this case has the same form as Eq. (26). A similar consideration goes
also for more complicated cases. But, in general,as to be seen from Eq. @7

the zeros of the polynomial in { };’ are not constrained on the imaginary axis.
/

From the above consideration, entries of Y-matrix of a normal reactance 4-

terminal network should have the following properties:
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(i) They have the form Eq.(26),

(ii) Y“()\) and YZZ(X ) are rational reactance functioﬂs.

(iii) Determinants of residues of poles are non-negative,

(iv) v (o) > (o) >0, v,(0) > £(o) > 0

Of these conditions, (ii) and (iii) are such that should be for reactance 4-
terminal network. These are the conditions necessary for a normal network,
but not sufficient. If the series elements and ideal transformers are permitted,

these conditions become sufficient.

Conditions on K-matrix may also be stated. The K-matrix of a normal
network should have the following properties:
(i) They have the form Eq.(21),
wz()\ )
v 2()\ ) + e e

(ii) Y(\) = vl()‘) ry ul()‘) is a positive real function,

(iii) Eq.(24) holds
(iv) v 1(o) > £ (o) >o, vz(o) > f(o) >0
Further, let us call the case an "open-branch” network, where the equalities

hold in (iv).

Now, several theorems will be described that will be of use in the
transformation of networks. The first one corresponds to Richards' Theorem
extended into open-branch 4-terminal networks.

(Theorem) If the Y-matrix of a 4-terminal network satisfies the 4
conditions above described, with equality in (iv) and IZ 1, then, after
separating a unit element Y“(l) from the input side as a cascade element,

the entries of the Y-matrix of the remaining network can be represented by

Yl A=4 YD)
Yu(L)y—=d Y ('

Yu(D) Yo H—24
Y=Y, (&) '

V1=2Y (1) Yy(4)
Y (D=2 Y,(d)

y”,( )= Y"(l) K

Yy'(h) =
(28)

Y]u_gl'(‘) =
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h
where 452 V(D) Yol A)— Vi)
(28a)

and these again satisfy the above 4 conditions with equality in (iv).

This theorem can easily be proved from the properties of the Y-matrix
and those of positive real functions. This theorem is also true in certain

cases of networks that are not open-branch ones.

This theorem states, with regard to the K-matrix, that the matrix, obtained

by multiplying the matrix Eq.(23)by the reciprocal

b

I

1 =q (29)
—Ada 1

1. —-
V1-it

of the matrix Eq. (3)from the left, will also satisfy the conditions of the K-matrix

of an open-branch network. Here, in the above expression,

vy u(1)
w(l) 7 o(1) 7

a= Y, (1) = (30)

= Y(1)
The following theorem is an important one in converting a series element

into a shunt one. (Fig. 7).
b/a

j—% E L

(A) (B)

Fig. 7. Transformation between a series element and a shunt element

(Theorem) A network, built up with a unit element a with a series
inductance b/\ at one end, is equivalent to another network built up with a
unit element d with a shunt capacitance c\ at the other end. Here the values
of the elements should satisfy the following relations.

.8 =.ab_
‘= atb’ d= a+b ]

or (31)

a=c+d, b=d’+d. l(
¢
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Kuroda gave rules of transformation for the cases of a series capacitance,
a shunt inductance as well as of a resonant circuit, but all these cases either
ideal transformers or close coupled coils are necessary. These transformations
are, in general, a kind of inverting the order of transmission zeros in

cascade networks, and one of the papers treating this problem in lumped
" domain was prepared by YamamotoZl.

The following corollary comes out directly from the above theorem.

(Corollary) The network Fig. 8 (a) has always an equivalent network

Figo 8 (b)r 1 © o] ‘.*»_‘,-7-\
A T

(A} (B)

Fig. 8. Transposition of a shunt capacitance
wherein the values of the elements have the following relations

d =a+b, e+f=c,

1.1 1.1 | (32)
b+c'"d+e' :

A theorem will be presented which is of use in eliminating negative

elements.

(Theorem) Take a Bruner section with a negative inductance in series

with a unit element as shown in Fig. 9 (a),

/
P _"’.l ca i
§ a
I et S
1t <] - 1},
A) (B)
b crd (32a)
Fig. 9. Transformation into a unit loop ab

(32b)

then it can be transformed into an equivalent unit loop with no negative elements
(all alphabets are to be of positive values). The conversion equations of the
elements are given as follows
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¢~ abe’' 14-a*)

p
_cdib-a)

f: JE (33)

= bd b+ an*) |‘

7 - op
where ad(b+aan®)

h = b .

(33a)

p = b +a*(ad +bc).
The equivalence may be readily seen if one calculates the Y-matrices of both

networks. The network Fig. 9 (a) can also be transformed into the form Fig. 10,

oo
~sag | @ |3

Fig. 10. Equiva.len—t network of Fig. 9(a)
where the condition of capability of transformation without negative elements,

that is, the condition which corresponds to a > b in the above, is that only the
capacitance at the left end is negative and all other elements have positive
values. The condition of close coupling takes the form

‘:}2« =a'+ct+d (33b)

Moreover, if there follows another cascade element to the ri~ht, the inductance
¢/\ can also be transformed into a capacitance. Consequently a very important
result can be obtained that any standard network, in which capacitances and
resonant circuits are connected in turn alternately separated by cascade
elements, can always be transformed into a network with only positive elements,

if it is 4 passive network, even if some the shunt capacitances are negative.

Lastly, a short description will also be made on the case where the

inductance of the resonant arm is negative, as shown in Fig. 1l. This is the

L7 W

é-‘/A ~-da
! A2-g?

Fig. 11. The case of real zero

.
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case where the resonance frequency, and consequently the zero of Y,

is on the real A -axis. Comparing this case with the former, the only difference
is the substitution

~b—=b, d-o—~d, o—--o (33¢c)

and the transformation representations into a unit loop can readily be obtained
from those for the former case. As one will see, the condition of getting no
negative elements is

atz1

(34)

4. CONSTRUCTION OF 4-TERMINAL NETWORKS

In this chapter it will be discussed how to construct a network with
prescribed 4-terminal parameters. The prescriptions may be made in K-matrix,
Y-matrix or input impedance; but K-matrix will be the most convenient in
considering conditions of realizability, because in Y-matrix or input impedance

some common factors in the numerator and denominator may be cancelled.

Now, a K-matrix has in general the form Eq.(2l), and the Y-matrix
thereof is given by Eq.{26). It has already been described that there are
the relations

2= fN>0, 0,(0)=f0)>0 (35)

When inequalities hold in these expressions, residues at A =0 are not compact.
Then surplus residues can be taken out as shunt inductances as shown in

Fig. 12, so that the 3 residues of the remaining network are equal. That is,let

Fig. 12. Transfofmation into an open-branch network
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Cwu(d)

Ua =« (36)
then the residues of Y”, YZZ and le will be

LR COOR ()] (36a)

a a ' @

so that the inductances to be taken out from the input and output ends are

(0)—£0) 0, (0)—f(0) (37)

A
al ' ad

Needles to say, these can be realized by elements of characteristic
admittances {Vz(o) - f(o)}/a and {Vl(o)-f(o)}/u with far ends short-circuited.
As for the remaining network, equalities hold in Eq.(35), so that the constant
term of W (X) should be 0, wh1ch means that the K-matrix should take the
form Egq. (23) and the network must be of an "open-branch" type. Consequently
the whole problem will be sclved if the synthesis of open-branch networks is
established. For that reason, the discussion will be constrained ©only to open-
branch networks. Of course, it is also possible to take .out shunt inductances
in the intermediate parts, not at the beginning, and get sometimes element
values easier for realization. The way of taking out shunt inductance at

first is only for the purpose of making the treatment simplier.

Now, let the prescribed K-matrix be

n(d) ) (38
*T1 a*)‘fu) (1) vy(d) )

Here the relation
01 (2) v (D)~5,(D) w,(R) = (1=-22)" f(4)? (39)

holds. As is clear from the expressions of operating transmission coefficients
to be described in the next chapter, roots of f(\) give transmission zeros of
the network, and most of them lie on the imaginary axis of N\ in practical

filters. For this reason, only the case will be treated where the roots of
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f(\) lie only on the imaginary axis. This is, as stated in the preceeding
section, a necessary condition to be a tree-and-branch type network, and

the procedure described below are, in general, to get to such structures.

Multiply the 5 polynomials of K-matrix by an appropriate constant, so
as to make the constant terms of the even polynomials unity. Then f(\) may
be written in the form: :

= (1) (145 (14 £5)

40
0<o <oy <o <anl o (40)

Here, the number of transmission zeros at finite frequencies is taken to be m;
another transmission zero at A =co may also be possible. Let the degree of
the K-matrix be n, then the multiplicity r of the transmission zeros at A =
be

.f=’l'—2"l'—l (41)

Considering that the transmission zeros at finite frequencies make pairs
(positive and negative), and also that there are £/ 2 transmission zeros at
A=+ 1, the above expression shows that the total number of transmission

zeros is equal to the degree of the K-matrix, as should be.

The general network realizing such a K-matrix will take a form shown

in Fig. 13 (a). This may be rewitten in the same form Fig. 13 (b), which

LU 7mars

() (B)
Fig. 13. Standard form of a tree-and-branch network
corresponds to a ladder type structure Fig. 14 in lumped networks. The

3

I 1

Fig. 14. A ladder network
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series inductances are changed into shunt capacitances between cascade
elements. Consequently the synthesis procedures are also similar. First
obtain the input admittance

oy D)4

YO = i tuid) (42)

from the prescribed K-matrix. As was the case in ladder networks, it is
necessary to have a simple transmission zero at A =oo in order to have no .

negative elements. Thus, one has
Y(o)=o0 or Y(w)=9 (423.)

Even in the latter case, the former relation will hold if a cascade element

would be separated. Therefore only the former case will be considered. Get

Crn =[LS‘-7— (43)

cAaca

This is the maximum capacitance that can be taken out at the first stage.

The value of Y(\) at a finite transmission zero will be, by Eq. (39)

e el (43a)
Y(;c?.)— wiim) = olioy = imaginary
Therefore
_ Y(l)"'iﬂv Y(jﬂv)
C|v— N - g ’
14a/ ) (44)

becomes real. Obtain the values of Clv for all transmission zeros; some of
them may be negative, and some positive. Let the smallest among C10 and
those of positive values of Clv be Cl’ and take out XCI as a shunt element.

The remaining admittance is

(45)
Yid)= Y(A)-ACn
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Let C].= pr then by Eq- (44);

Y\(1)=ja. Y (jou), (46)

Since C:'fC10
from YI(X ), then the remaining admittance will be

, it follows that Yl(oo)‘= oo. Take out a cascade element Yl(l)

y = Y(h—aY, (1) 47
Y = YO s (47)

This is seen to have a pole at A = 0“ by Eq. (46). Take out this pole as a

resonant arm, That is

_ auk (48)
YJ(A) - Y’z(l)"' Au+d."2 .
where _ Bda?
an _[Y”“) A l —jon
(48a)

This resonant arm can be rebresented by the cascade of two elements with
values a“/ (1+ 0“2) and a“/ {(14.0-“2)0'#2} . Here also

Y (o0)= Yi(o0)=0 (48b)

Therefore after taking out a cascade element Y3(1). the remainder
Y4(X) satisfies Y4(oo)= . Thus a stage has been completed which corresponds
to a transmission zero qu. The procedure will be repeated, just as in the

way followed in the original Y(\).

If, in the first step, C. . is the smallest, the pole of Y(A\) at A =00 is

completely taken away, reslglting in a transmission zero. If any more
transmission zeros remain at A =oo, one will have Yl(oo)= 0, and after

taking out a cascade element Yl(l) the remainder will become Yz(oo)= . The
first stage ends here in this case. In ordinary cases transmission zeros

at A = oo will be taken out after all the transmission zeros at finite frequencies

are taken out. After all the transmission zeros (including X\ =) are taken out,
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Y (N ) may not still be equal to a constant 1, and then cascade elements will be
taken off one after another, and finally one will get Y(\ )=1, which is the
terminéting admittance, and the whole synthesis ends. This is because the
K-matrix with no transmission zeros on the imaginary axis should have the

form Eq.(17) and should satisfy the condition of a "bar" network.

In the above description, smallest Cl" has been chosed in the first stage,
but in some cases those not smallest may also do as well. The above
procedure may be applied to Yn()\) in a similar manner, but a special care
will be needed if there are common factors in the numerator and the
denominator of YH(X )=v2(>\ )/ ul()\). That is, this common factor cancelled
is a transmission zero, as to be seen from Eq. (39), and even if YH(M is
made oo at this point, it is not sure that the whole residue of the pole could
be taken out. In such cases one should consider YIO(X) along with YH(X )e
Moreover, following the procedure and at the last stage one will obtain Yzz(k); :
if it is smaller than the prescribed Yzz()\ ), one must connect needy admittances

in shunt to the output terminals.

Kuroda and others use the following procedure instead of the above
stated one. First take out a cascade elément Y() from Y(\A). Then take out
an appropriate series inductance, and then take out a resonant arm. After
that, take out two cascade elements and again take out a series inductance,
and so on. Apply transformation described in the preceding section and
change series inductances into shunt capacitances. Or, take out transmission
zeros as a ladder network, and synthesize the remainder as a "bar" network,
and the whole network is transformed into a "tree-and-branch" one by the
use of transformation formulae given by Kuroda. The computation will,

however, be rather complicated.

The synthesis procedure has been described so far, but it is not always
possible to complete the synthesis with only the conditions stated in the
preceding section. It is very difficult to obtain necessary and sufficient
conditions thereof, so that the following is concerned only to the sufficient

conditions.
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In performing the above procedure, two cascnarde elements are needed
to take out a transmission zero at a finite frequency, and when all finite
zeros are taken out, a pole at A =00 is necessarily taken out along with.

Therefore the number 1 of the cascade elements must satisfy
I.:2m-r—1 (49)

where r is the multiplicity of transmission zeros at A =co. Of course those

cases should be excluded where two zeros are taken out at a time.

e AR

Fig. 15. Alternate way of synthesis

Next comes the problem of negative elements. In lumped networks they
may be realizable if close coupled coils are permitted. In distributed
networks there are no corresponding ones, and would not be realizable in
the original forms. The use of unit loops described in a previous section
will bring out a certain extent of possibility, but here the discussion will be
constrained only to tree-and-branch networks. Kasahara and Fuyjisawa
have given a sufficient condition to have no negative elements. It is stated

as follows.

""N\ =00 should be a transmission zero, and any of the finite real frequency
transmission zeros ST ETIEEEY L should not be smaller than any of the

positive real frequency roots of the four polynomials vl(X), vz(x ), ul(X) and
uz()\ ). 1"

However this condition can be extended a bit, as can be seen from the proof

below. Consider two admittances

2GR = %D 50
Yll(‘) haad u|(l) ’ Y'n(l) - v](‘) ( )
Here even if the numerators and denominators have common factors, they

should not be cancelled, but it should, in spite, be considered that the poles

[~}
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and zeros are close to each other. Now, if Y{(w)=o0, then Yll(oo)=oo and
Ylo(oo)=co, and if A =00 i8 a transmission zero of multiplicity equal or higher
than 2, the residues of the three admittances are equal, and if the multiplicity
is 1, the residue of either Yll or YIO' that has higher degree, will be equal

to the residue of Y(A\). Furthermore, the residue of the admittance of the

higher degree is smaller than that of the lower degree. This can easily be

seen from

v,(4) 1©, ) __~ _ .
v,(A)u.(A){ W) " o) } (=A%)t fA) (51)

which is deduced from Eq.(39), but may also be considered to be true from

a physical sense. Moreover, the highest zero of the admittance of the

higher degree is greater than that of lower degree. Therefore the above
stated condition is that any finite real frequency transmission zero -should not
be smaller than the highest zero of either YHO\) or YlZ()\ ), which has the
higher degree. Let that of the higher degree be denoted by Yl()\ ), then its
degree is n, equal to that of the K~-matrix. Arrange its zeros and poles and

give them ordinal numbers beginning from small to large, as shown in Fig.l6a.

(A=on)

(A) Wy.¢ W,y Wy g Wy Wy

(8) Wy’ Ty Wy W,

(L&) B Sy Gny ot
(D) ’

Sy f Way Wy w4

Fig. 16. Shifting of zeros and poles

After taking out a cascade element from Yl()\ ), the zero w o1 will move to

o, the pole w ptow

n-é which is smaller than @ ;. as shown in b.

Or, if the pole at A=oo Lequal to that of Y(A), and can be taken out] of Y (\)
is taken out as a shunt capacitance, then w o1 again moves to o, and other
zeros move a bit upwards, whereas the poles do not move, as shown in c.
Therefore, after taking out a cascade element, a pole w__, moves to o,

w -3 to a point below w _pr ascan be understood from these considerations,

a pole w _pcan be shifted to any point between wn_é and oo, if the capacitance
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to be taken out first is properly chosen. Since wn_é is smaller than w
the pole can be moved to a transamission zero, if the transmission zero is
above the highest zero ey In this case, Y(\) will naturally have a pair
of poles, and since the residues are generally equal, the pair of poles can
be completely taken off as a resonant arm. If Yl(h) had a common factor,
corresponding to this pole, in its numerator and denominator, some part

of residue will remain unseparated; but this status can be considered

that 2 poles are duplicated, so that one may take the matter to have one

of them separated. Upon separating the pole, the zero w3 goes to oo.

In the next, upon separating a cascade element, the pole w _4 gOes to co.
Then the highest zero will be w ne5" In any step of operation, a zero or pole
n-5 will be below

@ _2° Thus again all transmission zeros are located above the highest

can not go beyond the adjacent pole or zero, so that w

zero (wn_S), leading to the possibility of further synthesis.

Further, the highest zero in the second step is below the highest pole
at the beginning, so that it will be comprehended that the following condition
is also sufficient.

"\ = should be a transmission zero, and all other transmission
zeros should not be smaller than the greatest root of v 1(7\) or ul()t ), and
at least one of them should not be smaller than the greatest root of v 2()\)

"
or uz(k IR

Through above discussions, conditions of tree-and-branch networks have
been revealed to some extent. Now the restrictions on the structure will be
a little loosened, permitting the use of unit loops. This, in effect, to permit
the presence of negative shunt capacitances in tree-and-branch networks, and
such a network may also be called "a tree-and-branch network in a broader

sense”". A sufficient condition of realizability for this case is the following.

"Let finite real frequency transmission zeros be 0< a <o, <.. .§0m<oo,

then there should exist m+k~1 or more real frequency roots of ul(k) that are

not greater than® "
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This is a condition similar to that stated by Fujisawa7 on lumped ladder
networks. It will be noted that a transmission zero at A =co is here not
necessary. For its proof, Y(\) and Yll()‘) will be taken into consideration,

where common factors of Yn()\) are left uncancelled. Let
Y2
[ Sl )‘]J-w = Cu, (52)

then the shunt capacitance that can be taken out from Y(\) is

—~0 L C<Cp. (53)

If Y(\) has no pole at oo, C10 is of course taken to be 0. Suppose the allocation
of zeros and poles of Yll(X) is like Fig.(17). Then after taking out C, a zero

@' W Wil @,y
i P
© iyt ey Wisy

Fig. 17. Possible shifting interval of poles

w i 3 < w< ' 1
say @.,, can be moved to any point in the range w<ws W Here w. .

is a position of a zero if C10 would have been taken out. Take out a cascade
element, then the pole w, can be moved to any point in the range wi_<_ w< coi' .
Here wi' is a position of a pole if C10 would have been taken out. Thus in
the above procedure, any poles can be moved anywhere on the thick lines;
and especially the highest pole can be moved up anywhere ranging to oo.

The larger the value of C to be taken out, the higher the points will move.

Let the smallest among C10 and

Co = Yo, Y(jo)
! 1+ﬂv’ (54)

= Yu()—ja. Yi(ja))
1+ﬂv’

’

be C., . If any of Clv are negative, take the one of the greatest magnitude.

Take out C“‘. then
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Yl(‘) = Y(J)"AC]/(. (55)

Take out a cascade element Yl(l) and obtain the remainder YZ()\ ). Derive
Yu()\) corresponding to YZ()\),then, from above considerations, the pole that
was just below ? in the original Yn()\) will coincide with®

M M

can not go up beyond transmission zeros. Therefore the relative allocation

» but other poles

of poles and transmission zeros does not change through this procedure. Next,

take out the pole at 9 and obtain Y3()\). Derive Yn()x) corresponding to

M
Y3(X )o The pole&“ vanishes but the positions of other poles remains
unchanged; that is, poles belowa” have the same ordinal relation, and as

for transmission zeros above Ou, the number of poles of YH(X) will be

decreased by 1 which do not exceedga But, in the mean time, the transmission

L

zero at 0# is also taken off. Renumber the transmission zeros from small to
large, then there should be m+k-1 or more poles of Yn()\) that do not exceed
vu. If CufO, then of course Y3(oo)= 0, so that a series inductance can be
taken out. Besides, its value can be so chosen that it satisfy the condition
of close coupling with Cw, just as in the same.way as in Bruner procedures.
Thus, make

1
Y,lulr —iL (56)

Yc(l) =

then the corresponding pole of Yu()\) will move a little upwards but cannot

exceed the zero right above it. Take out a cascade element Y4(1) and make
Y5(
exceed the original zero. Throughout the procedure from Y3(X) to Ys()\ ), poles

M\ ); the pole of corresponding Yll()\) will again move upward but cannot

of Yll(K) move upward but never exceed poles right above. Therefore the
number of poles, not higher than ok’ can decrease, at most, by l. That is,
it can be stated, that there exist m+k-2 or more poles that do not exceed Gk'
On the other hand, the number of transmission zeros is now m-~1, and if we
rewrite the above number of poles as (m-1)+k-1, then it will be seen that the

initial assumption is kept unaffected.

If, at the first prucedure, ClO were the smallest then a transmission zero

at oo will be taken off by taking out clO' (If C10= 0, it is only necessary to
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take out a cascade element.) In this procedure none of the poles can exceed
the corresponding % Thus the condition is never broken in any of the
procedures, so that the synthesis can be continued, followed by a decrease

of the degree of Yu()\ ), until the whole procedure is completed in a finite
number of steps.

In the above proof, no comment has been made on the number of cascade

elements. It can be known as follows that

12> 2m+r—1 (57)
suffices. Here it is assumed that Y(oo) is oo if 00 is a transmission zero. If a
finite pole is taken out at the first procedure, m decreases by l, and { decreases
by 2, and therefore the above relation remains unaffected. For the pole at

A =00, both{ and r decrease by 1, and the above relation also remains
unaffected. If, during the procedure, one gets to r=0 and can no more take
out finite transmission zexl'os, only a cascade element will be taken out,
followed by a decrease of 1 only. But in this case there are no transmission
zeros above the highest po’e of Yll()») (if not, the transmission zero can be
taken out), so that there must be at least 2m finite poles of YH(X ), if the
number of the remaining finite transmission zeros is m. Therefore the degree

n of the K-matrix is at least 4m, and n=2m+l+4r, but in this case r=0, and

hence we have

1= n—2m. - 2m (57a)

It may be seen that the condition Eq.(57) still holds even if £ is decreased
by 1. Thus it has been proved that a network having ‘the K-matrix that
satisfies the above condition can always be constructed in a form shown in
Fig. 18. Apply transformations described in the preceding chapter, it may be

T

Fig. 18. Synthesis of a tree-and-branch network in a broader sense
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transformed into one with only positive elements, as shown, for instance in
Fig. 19.

Fig. 19. A tree-and-branch network in a broader sense

In the above, realizability conditions on K-matrices were treated. Now
consider the case where only the input admittance Y(\) is given. It should
be noted that the number of cascade elements is not specified, and any number
of them can be used in the structure, which was not the case where K-matrices
were given. Of course in this case these cascade elements are all degenerate
except those specified in Y(\). Because of this freedom, the condition of

realizability becomes a very general one as stated below.

(Theorem) If, in an admittance

Y(a) = (57b)
v|“r“|
roots of v 1V2© 4 vy lie only on the imaginary axis, except the origin, and
on A =+1, then a tree-and-branch network, in a broader sense, exists that

has Y(\) as its input impedance.

To prove this theorem, it will be enough that among K-matrices of the
networks having Y(\) as input impedances (there are an infinite number of
such networks), some of them can be shown to satisfy the above conditions of re
realizability. For the prupose, the fol}owing two auxiliary theorems should

be proved.

(Auxiliary theorem 1) If n is taken large enough, it is possible to
put any number of roots of even and odd parts of (1+\ )™ into any finite interval

(0, jo ) on the imaginary axis.

The even part of (1+\ " may be written

(14 A® 4 (122 (57¢)
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and with A =jtan®, this expression may also be written

eIntgmne ._ cos nfl
2cos"8 " cos* @'’ (57d)

Its roots have the form 0= (2k+1)r/ 2n. Thus the roots of the even part of

(14N )2 are
witan PN (b=, 1, e, (S101) 58)
Similarly, those of the odd part are
0. zitn® (k=12 - ("5 (59)
The following auxiliary theorem can be directly deduced from this
consideration.
(Auxiliary theorem 2) Let pl(X) and pz()») be even polynomials and
ql(X) and qz(k) be odd polynomials. If
b b (592)
are reactance functions, then the roots of
gy = pA) gl ) + pl) @l DD (60)

lie all on the imaginary axis, and the number of roots lying in the interval
(0, jo ) is equal to or one larger than the sum of numbers of roots of ql(X) and
qz(X) lying in the same interval. Here a root at A =0 should be excluded and
any roots of 9, (\) and qz(k) that are coincident should be counted as 1.

Its proof can easily be seen from the fact that

P h) Pl Ay A g D +pr ) gi(R) (61)
qrh T grdy T @ Argyd) )
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is also a reactance function, and has poles of both q and q,, and there must
be a zero between two poles. '

Now, return to the theorem. Multiplying both the numerator and the
denominator by (1+\ )®, one obtains

Yoy = (Hwd1+dy
_ (0 +u)(1-+4)

_ (Ophq)+ e ptvn) ' (62)
(nip+4,.9)+ (4,0+v,9)

where p and q stand for the even and odd parts of (14\)® . Write this expression
as

v 1y

v+, (62a)

then from the relation

v~y - (1—ity f(4)?

(63)

one obtains the relation

vy —uw ' = (1=iF )Iogﬁl)-_. (64)

Here it will be assumed that the constant terms of vy and \PY and consequently
those of Vl' and Vé, are 1 (this assumption does not limit generality). Then
the corresponding K-matrix can be written
1 vy u

€% TV DLV (CORIY (65)
Now, let any root of f(\) be jak, then the number of roots of ui()s) that lie
in the interval (0, j ak) is not smaller than the sum of the numbers of roots
of ul()\) and q(\) in the same interval. However, since if s be taken great
enough, the number of the roots of q(\ ) in the interval can be made as large
as desired, so that also the number of roots of ui(h) in the interval (0, j&k)
can be made as large as desired. On the other hand, multiplication by a
factor (1+\ )a does not affect the number of transmission zeros at finite

frequencies. Consequently, it is always possible to choose the value of s so
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that the number of positive real roots of ui(k) smaller tha,nfu-k is equal to or
greater than m+k-1. Therefore the network can be synthesized as a tree-and-

branch network in a broader sense.

From this theorem, it has become always possible to realize a network,
having transmission zeros only on the real frequency axis, except the origin
and at A=+ 1, without using any negative elements, if a sufficient number of
cascade elements are used. Moreover, a simple transmission zero can be
located at the origin by the use of a shunt inductance. This status is rather

more general than in the case of lumped ladder networks.

So far, only the cases were discussed where the transmission zeros
lie all on the imaginary axis except A=+ 1. This is almost sufficient for
practical purposes, as stated already, but it would be necessary to discuss
more general cases from the standpoint of the theory of network synthesis.
Even in this article, it has been shown that the synthesis is possible if the
transmission zero lies on the real axis at a point of magnitude greater than
l. Those having transmission zeros on other points cannot be constructed if
only the unit loops are permitted. A general normal network with larger
loops will be necessary to be taken into consideration to treat those cases,
but it is not the scope of this article. The author only refers to Ozaki's

parallel tree-and-branch networks constitute simple examples therof.

5. APPROXIMATION OF CHARACTERISTICS

It is a very important and interesting problem how the transmission
characteristics of a network can be approximated to a desired one, in the
design of distributed filters or matching networks. In this chapter, the

matters will be discussed one after the other.

First, the discussion will be confined to open-branch networks. Since
A =0 comes in the pass band, they are appropriate for low-pass filters.
and may also be used as band-pass filters if the periodicity of the

characteristics is taken into consideration.
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The operating transmission coefficient S(\) of a 4~terminal network is,

by the network theory,

_ A+B+C+D
SW) = 2 - (66)

where the terminating admittances at both ends are taken to be 1. In open-

branch networks, it may be written

S = _v!(_‘)""_"ﬂ.(_‘._)'t“ '_( .4.).'.",!‘1(,4).
) =" g0 A=) fd) -

S L C.)
T Wi D
where '

g(a) = 0](‘)""02(&);(0(‘)"'“2(‘) (68)

is a Hurwitz polynomial with a constant term 1. Furthermore, put

WD) = ul DT_"IQ_)_';_“L( K)—uyd) (69)

then the echo transmission coefficients may be written

_1+Yay _ogth) 70
TO=1"y@y = h® (70)

Here the condition Eq.(38) should be replaced by

g(A) g(—R)—h(A) k(=) = (A—4A") f(AY? -

Conversely, if S(\) is given in the form Eq.(67), one can dertermine
the polynomials coming into consideration from S(\). For the purpose, one
should first determine h(A\) (not always unique) from Eq.(71), and make
m(\) and n(\) by

m() = g(A)—h(A) |

n(A) = g(D+h(A) | (72)

and then separate them into even and odd parts:
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m(A) = v,(D)+u,(h), | (73)
#(2) = v, (D) +w,(d). |

In most cases of approximation of characters, only the amplitude

characteristics are specified. Therefore consider the expression

- i(A) e (—4 ]
S5 = s S =4BZR:

KA h(—4). ; (74)
(1=A% f(A)? -

=1+
which represents the square of the magnitude of operating transmission
coefficient. It is desired to approximate this function to a desired character-
istic. As for the value of £, it may be arbitrary, because if £is too small
compared with the degree of g(\), one can multiply the numerator and the
denominator by (l—kz)s before splitting S(\) from Eq. (74). If only the input
admittance is required, the multiplication by this factor is not necessary.

One should only obtain g(\) and h(\) from Eq. (74) itself and put

. oAy gt —h(h) (75)
Y(d) = ndy T gl hid’

Although £ has been said to be arbitrary, the number of cascade elements
would become larger than £ first assumed, which means the increase of
degenerate elements that have not direct effect on the characteristcs.
Therefore it may be better to assume the function with{ as the number of
necessary cascade elements.

Since g(\) is a Hurwitz polynomial, it is determined uniquely from Eq.(74),
but h(\ ) is not always unique. Even when the numerator and the denominator
is multiplied by (1-\ 2)’, there may be various ways of sharing the factor to
multiply into h(A). Take (1+\), then it means to insert a cascade section at
the output terminals; take (1-\), then the same at the input terminals. By

an appropriate choice, the network may be transformed into a desirable form.

Now the characteristics are specified only on the imaginary axis, it may
be convenient to use w=k/ j in place of N\ itself. First, tor the bar network,
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the simplest, one has

Glw

§§ == (14at i’ (76)
where G(w) is an even polynomial of degree 2n in w, and G(0)=1. Now, by

the transformation

@ = tan :’; (77)
depict the interval -co<w < oo into an interval - <6<w (this means that the
measure has been returned to one proportional to the frequency, that is
8=nf fo). Then, since

0 1
2 4o (78)

cos’
. 2
Eq.(76) can be represented as a polynomial of degree n in cos (8/ 2), and

consequently also by a Fourier cosine series of n terms as follows:
5SS actacos0- o - a, cosnt, (79)

Therefore the given characteristics should be approximated by a Fourier
rnsine series of n terms. Toconvert this series into an expression in w,
it will be convenient to use

(I—jo - 1+ju
214-w%)" ) ’ (80)

cos r0 -.

As alternate methods one may use the transformations

" 1 v’ l-w’ 80a
' 1+t ©OF 1+ * oT 4w ( )

and carry on approximations in terms of x. Especially, if a low-pass t:lter
is aimed, Wagner-character or Tchebycheff character will mostly be used.

For the former, one should put

Ko™ ' (81)

SS =1+ (14"
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and for the latter
SS= 1+-g [1+ cos{n coe"(2 ’E(li'_"_mo::; 1)}] (82)

Here n is taken to be odd, and @, is the limiting point of the pass band.

In case of simple open-branch networks, the form of ST is

_G(o) : (83)
A+o*)

§S =
like Eq.(76), but here if G(w) is an even polynomial of degree 2n, it is only
necessary that n>1. Thus, if A(w )2 is the characteristic to be approximated by
ST (this may also be given graphtcally). one may determine G(w) by
approxxmatmg A(m) (1-l-m2 by an even polynomial of degree 2n, or, instead,
make Aw) / (14w ) and approximate it by a Fourier series, as in the

case of bar networks.

To have Wagner characteristics, one should put
S5 =14 ol — (84)

To have Tchebycheff ones,

— 12
$8 =1+ 3{ 1+ con{2(n—1)con o
o'(d+of)
oo (225500 I)D
Now, in general cases, one has a form
Pop— ) - : (86)

(+w*) Fw)

If L=0, the matter is just the same as in lumped ones; well established
principles apply themselves and any filters of high class can be designed

with Tchebycheff characteristics in the pass band as well as in the stop band.
However, in this case, as stated already, all cascade elements are degenerate

and have no effect on the characteristics, only increasing the delay time. In
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other words, this way does not make full use of all possibilities of elements.
However, it is still an unsolved problem to make the characteristic of a form
of Eq.(86) into a Tchebycheff one in the pass band as well as in the stop band.
Kasahara and Fujisawas, and Kuroda8 made proposals on this point, but the
writer has obtained a fairly satisfactory method by extending Bennett's theory.
In the method by Kasahara and Fujisawa, first the form of

) M2y (-7,

SS -. 14 I

(87)
is determined from the lumped network theory. Then by choosing a correction
term M(A) M(-\), one obtains

MOM Ayl -2
fa (88)

S8 1+
. : 2
Here the correction term has a denominator (1-\ ), smaller than 1l in the
pass band, and larger than 1 in the stop band; a Tchebycheff characteristic
of a bar network may be used, for example. The characteristic thus obtained is

not a perfect Tchebycheff, but is surely improved as compared with that of
Eq. (87).

Next, Kuroda's method is an extension of that presented by the writer
for bar networks and simple branch networks, and belongs to one of applying

Darlington's image characteristic functionsls. That is, let

SS - 1.+dcoshto (89)

and represent 9=91+92+. .o .+9n. Make ei such that cosh Gi are irrational
reactance functions (Q-functions) with congruent real ranges and imaginary
ranges. Some of them are chosen to have poles at A=+ 1. By this method a
function will be obtained that has poles on any points, and has a Tchebycheff
characteristic in the pass band. The method to be described below is also an

18 19

extension of a method often used in lumped network theory » and is
essentially identical with Kuroda's, but for calculation purposes, it will be

more convenient. (Call it "x-parameter” method).
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By the transformation

convert the pass band (O.jwl) into the imaginary axis (~j 0, 0) of X, stop
band (jwl, j o0) on the real axis (0,1). Then

, (91)
¢ = (?’d‘@«‘_)‘ '
‘ P\
where ¥ = v gt~ w o
(91a)
‘has a magnitude 1 in the pass band, is greater above jwl. and becomes
infinity at jw 1 Thus construct a function
IR N ALYS S AN S S X AT (92)
o= 1 (w,?—w) (1-—:»;) (:v.,—a:)
where B e w e %= 1!
' (92a)

then it has also a magnitude 1 in the pass band, is infinity of multiplicity 2 at
A=j §~1, J 0.2. e+, of multiplicity r at A = oo, and of multiplicity { at X-i 1.

In the next place, make q from ¢ through

g1t (93)
=1—q
then q has the property of a reactance function in the pass band, takes a
value between 0 and 1 above jwl. and becomes 1 at each attenuation poles.
Now make

oA _ltet 149
He 2 2 (94)
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then ¥ is a characteristic function with a Tchebycheff behavior. That is, ¢

is positive real on the imaginary axis of \, oscillates between Oand 1 in the
pass band, and have poles of multiplicity 2 at each“q‘ at oo, and of
multiplicity £ at + 1. With an appropriate constant h, make

S5 =1+h%9 (95)

then a desired function of Tchebycheff behavior will be obtained. YJ¥ may also
be obtained, with convenience, from

{M(2+2)* (1+2)" (2,+2) OS] (96)
Mz =2 (1—2%) (2 —2")

o=

Thus a Tchebycheff characteristic function has been obtained with poles
at arbitrary points. The next problem is to choose the position of these poles
so that the characteristic is also Tchebycheff in the stop band. One method
is to adopt a function known for lumped networks and add poles at + 1. Of
course this will not give a strict Tychebycheff character, but would be better
than those by Kasahara and Fujisawa previously cited. It may be a method
to draw graphs of log (x +xy )/ (x =% ) for various x,, and construct log ¢ by
combining them graphically, just as could be done in image parameter design,
combining various m-derived sections. But a perfect characteristic could not
be expected by such an unsystematic way. In contrast to this, the method
of successive approximation described below will give almost perfect
Tchebycheff characteristics. This corresponds to an entension of the method
given by B. J. Bennett22 for lumped networks, and to obey the sequence, his
method will be followed in short. Call a function y ¥ for the sake of
convenience a front-side function, which represents tlie square of the
magnitude of a characteristic function having given pass and stop bands, and
call a function with inverse pass and stop band a back-side function. If a
front - side function is Tchebycheff in both bands, its reciprocal constitutes a
back-side function, Tchebycheff in both bands. First make a front-side
function which is Tchebycheff in the pass band with arbitrary poles in the stop
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band. This is the lst approximation. Obtain its zero points and make a back-
side function which is Tchebycheff in the stop band with poles at the zero points
of the 1st function. The reciprocal of this function gives the 2nd approximation.
Again make a front-side function with poles at zeros of the back-side function.
Repeat this procedure, and a characteristic will be attained which as near to
the ideal as desired. The convergence of this procedure is fairly fast, and

it is satisfactorily practicable. Thus a function can be obtained which is

Tchebycheff in both bands, without using elliptic functions.*

One may try this rﬁethod to distributed networks but he will find that it
does not go well by itself. The reason is as follows. Since attenuation poles
exist at A =4 1, the back-side function must be 0 at these. points, but it is not
possible to make a characteristic function with zeros at arbitrary points. But
if the idea of potential theory is made use of, a function can be made, which

has a good approximation. The method will be explained from the beginning.

Let the pass band be 0~ W stop band w, ~ o, and poles at A =+ 1 with
a multiplicity £ Assume transmission zeros j 01, «ee¢, in an arbitrary way,
and make

mofa b\ aba\
o B (PR (5
TS | ﬂr, &£ a/u—a’ (97)

in a similar manner as before. Make Y from this ¥, then the first
approximate front-side function will be obtained. The only needed are
the roots of $=0 and therefore (with {l an integer) from ¢ = -1, that is, from
moooow aor n
2l;:otan ! iz +1/tan ja, = (2/4+1\2 (98)
the roots Xor’ X02, °**Xon will be obtained (to facilitate the calculation, one
should make use of a table of trigonometric functions). The corresponding
values of A will give the zeros of the front-side function. To make a back-
side function that has poles at these zeros, first define y by
_ VR¥er _ il—k—a? (99)
y= w, ’ '_&/ 1—2*
*(Translator's note: This method of successive approximation was further
extended by K. Hatori.)



PIBMRI-1003-62 40

where

kool o

(99a)

and let the values of y be Yo1, Yoz, °°° that correspond to xoi Xp2,°°"" Make
’ ’ ’ ’
A S S A AR TAY
¢ uyx (1/‘..—;/) (U..-}-y) (100)

where y0=,)1+ w 2 w,, Thus ¢,has zeros aty= Yo' i.e. atA = +A1 but upon
making \IJ'\F Y=Y, becomes a pole of W » and one cannot have a back-side
function. Obtain zeros Yr Yareee¥V,, of P TP on the imaginary axis and construct
a function

"
v »”1' Wiy Byt
YT

kL

AL (101)

then this function has a zero at y = Yo' poles at Yov’ and is almost Tchebycheff
on the imaginary axis of y (stop band in A\ ). The reason can be explained with
an application of the potential theory23, as seen in the following. Consider

log ¢’ to be a complex potential on the A -plane. As seen from Eq.(99), two
Riemann surfaces can be considered to be connected at the stop band on the
imaginary axis. Place a line conductor on this portion, and put a shield between
the two surfaces. If we consider only one side of the surface, there will be

a continuous distribution of electric charge on the conductor. The distribution

of charge is determined by the flow-function

imng, l()g ['g arg g (1013.)

The charge contained between any two points in the stop band is equal to one
7 - th of the difference of arg ¢' on the right side of the two points. Quantize
this charge. For this purpose divide the conductor into portions each with 2
units of charge, and place these charges at the centers of each portions.

Through this procedure, the potential, where the conductor was originally

located, is almost Tchebycheff. The locations of quantized charges are such
: !

that arg ¢ is odd multiples of », i.e.,
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2."'.7tan"‘ g [ tan™! .y - (2/z+1)’2r (102)

v—-1 v "

‘This gives nothing but the Yye* ¢+ ¥y, formerly stated. Thus it can be seen
that Eq. (101) is approximately Tchebycheff. In that way the 2nd back-side
function is obtained. To proceed further, one should make a front-eide

function with poles at Yy* A numerical example will be shown:

(102a)
o, =1, 0, =4/9, m=3, =5

Start with all poles at A=co. Table 1 is the result. y's are converted

into X 's for back-side functions.
Table 1. An example of succesive approximations

0 ’ 2 r 4 6

|
! 0.7186 0.71823 0.71821
Back-Side ! ‘ 0. 8080 0. B0%45 0. 80743
| o= 1 0. 9583 0. 95606 0. 95603
L. ._'. AR N E D R
FO. 1659 7 0. 1456 §0. 14590 J 0. 1540
§ 0. 5294 5 0. 682 § 0. 46778 § 0. 6787
Front-Side | sn ‘ jrmai J0.9069 J 0. 90582 J 0.90581
| %o l j 1.8339 § 1.6640 § 1. 66349 J1.66346
i A | jA0NT8 ja7ose L ja.rom7 ja.70201
L ¥e l joo I{ joo E joe , Joo

One will see that approximation is fairly good at the third. Transform
the front-side function obtained from the 7th approximation into that of \,
one has

—A% (0.97930-+ 4%)% (0. 82060+ 4% )? (0.54930-+ 24)* « (. 26546+ 4*)?
(2. 065454 2% )t (2. 84677+ 4%t (11. 6287+ 4%)*

5 (0.068001+4%)?
(1—A%)"

wW--K
(102b)

The deviation of minimum attenuation in the stop band is within 0.1 db, and
can be considered to be perfectly Tchebycheff.

To add words to the x-parameter method, although needless to say,
those corresponding to Eqs. (82) and (85) can be obtained also as special
cases.
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In the last place, citations will be made on matching networks. Heretofore,
both terminating admittance were taken to be 1, but here they are assumed not
to be equal. Let these be G1 and GZ’ and also

" G,
G——"&/G\Gzy k—:~/'c';- (103)

The frequency band of matching required is assumed to be (fl’f?.) as shown
in Fig. 20, with {, at the center. Obtain X\ from Eq.(1). Since the

0 h Jo Jy
Fig. 20. The characteristic of a matching network

characteristic is periodical, it is only necessary to have a good match in the

interval (fl,fo). In terms of A\, it is to have a match in (jwl. j o) where

o, = tan ’gg (103a)

This is a kind of a high~-pass filter, but since there are no requirements on
the attenuation in mismatch ranges, so that no finite frequency transmission
zeros are necessary, and a network of a simple configuration will be
satisfactory. Shunt capacitances cannot be used because \ =0 is in the

pass band. It follows that a bar network or a simple short-branch network
will be the representative ones.

Now, S(\) for different terminating admittance should be written
S(4) = .k“!wﬁgﬁi:g:'c_ﬂ.‘"’ (104)

and therefore for a bar network

=, 9 (105)
SW = (1= )"

where
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9(4) = kvy+Guy+ G 'u,+ k'y, (106)
and in this case one has
k4 k!
SO = g =7, =1 (107)

Conversely, to obtain the polynomials when g(\) is known, one has to

proceed as stated before. First obtain h(\) from

9(2) g(—=)—~h(d) h(—2) = (1=a%)" (108)
where it is so chosen that

RO0) :_!efzk'.‘_ (109)

From this obtain m(\) and n(\) by Eq. (72), and separate them into even
and odd parts respectively:
m(A) = kv, (A)+G™ un( A,
n(A) = ko (D)+G 1, . (110)

As for approximation of the characteristics, A should be replaced by
l/X in the foregoing representations, because A\ =co is at the center of the
pass band. But the parameters should be so determined that the condition
Eq.(107) is satisfied.

For a Wagner characteristic, one shall put

S 4, (k=K 11
S5 =14 ey (111)

Let n=1, for instance, then one has

v, =C (111a)

A

which means a unit element G, and is the same obtained elsewhere hitherto,

because G = ,;GIGZ'

Let n= 2, then one has
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G

G., = N =
V&G G» v b (111b)
and since there is a relation
G ’ Gu I .
log G,l,' : log G :logc - 1:2:1

G, (l1lc)

the result is the same as obtained so far. It was anticipated that even when
n is equal to or larger than 3, the sucessive ratios, taken in a similar way,
would be in the relation of binomial coefﬁcientslo. But calculations do not
follow the anticipations. The anticipation seems to hold if k is nearly

equal to 1.

To have a Tchebycheff character,

SS§ =1+ g [1+ cos {n cos™! (2 1;‘-__0;‘: -—1)}] (112)

will do. In order that Eq.(107) be satisfied, § should be determined from

o -' 4
* ; Y =d(1+ cos {ncos™'(1+2w*)}) )

Or, if one would follow the x-parameter method, he has to put

g= Yo+l Voldl (114)

on oy

and make

& _ {(@)+2) DERHHM)?
SS =1+¢ F i giyn (115)

Since it is the magnitude of theAreflected wave that is of major problem in

a matching network, the echo transmission coefficient T(\A) will be of more
direct significance than th~ operating transmission coefficient. The minimum
echo attenuation will be s, . :ified to be a certain db in the matching band.

Needless to say, there is a relation between T(A) and S(\) such that
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h (S§)"'4+(TTH"' =1

. (116)
. and hence Eq. (115) can be rewritten as
=_ 1 ('x‘Q__m'l)n
TT= 143 (o b obses)? (117)

Fig. 21, shows the relation among kz,f and n for the minimum echo

1

; 1
0 ”]{
/

/P
W

' /0/2 fo
. Fig. 21. Design chart for bar matching networks (minimum echo attenuation
30 db)
AN attenuation of 30 db.

Next, for a network of simple short-branch type, S(\) takes the form

(A (118)
S(A) =~ g_',"_':::' W
W =2viZh
and to find the polynomals, one should make use of the relations
(119)
9(2) g(—=D)—h(A) K(—A) = —=2* (1-a%)"
m(d) = G wy(A)+ kA v, (), (120)

n(2) = GAuy(D)+k"A0,(3), )

Here it should be noted that the constant terms of V1(7\) and VZ()\) are equal to or
or greater than 1. But since there are no means to ascertain whether this
condition is satisfied or not, when determining g(\), one should see it in

invidual cases.

Now the approximation of the characteristics should be considered.

Since, in general,

_ o) g(=d) _ . (D A(=d)
S8 = —ia=my =1 =y (121)
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for a Wagner character one should take

A :
§§ =1 Ja—ry (122)
For a Tchebycheff character,
~1+ 8 S L g Lted } 123
S§—-1+2[1+ coe{zcos‘ i +ncoo'( TRy 1) ] (123)

or

+2)(@+2)" OPBIA)
(1—2") (2,2 (124)

s§=1+414

In these cases, h, §, etc., should be so determined that the constant terms

of 1 and v , are equal to or greater than 1.

6. SYNTHESIS THEORY OF DISTRIBUTED TWO-TERMINAL NETWORKS

In this chapter the focus of interest will be shifted on the synthesis of
2-terminal networks. This problem has a certain concern with synthesis

of 2-terminal networks without mutual inductance in case of lumped networks.

In case of lumped networks, theories are known as those given by Bott
and Dufﬁnn, by Kiyasul2 and by Miyatal?’ which correspond to the extension
of Bott and Duffin's. But all of these could not be applied to distributed
networks in original unmodified forms. Only the idea used by Miyata may

be applied, and the method below follows his idea.

The principle lies in the dissociation of a network into a number of
partial networks with reference to the even part of the admittance. In case
of a lumped networks, ladders of L. and C are used as partial networks,
whereas in case of distributed ones, instead, tree-and ~branch networks in

a broader sense are used, like those described in previous chapters.

If the admittance has poles on the imaginary axis, then théy can be
easily taken off as shunt reactances. Therefore the given admittance may

be taken to have no poles on the imaginary axis from the beginning. An
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admittance with no poles on the imaginary axis can be uniquely specified by
its even part, as the network theory says. Divide this even part into a

sum of a number of even functions, each of which satisfies the condition of the
even part of an admittance (that is, non-negative on the imaginary axis).
Then an admittance will be determined, for each of these, that has the
specified even part, with no poles on the imaginary axis. The sum (i.e.,

the parallel connection) of these admittances will be equal to the original,

from the uniqueness above stated.

The input admittance of a 4-terminal network with an admittance G at

the end is
- YA
YO =Y~y v’ (125)
and therefore its even part becomes
-1 = =GV (A
Gy =5 (YN+Y (=D} =Gy Gy (126)

That is, G(\) is determined only by Yiz()») and YZZ()\ ). However, since
Y(N\) has no poles on the imaginary axis, the residues of Y, and Y,, are
compact, and Yu()\) is determined necessarily from these. Now, suppose
the 4-terminal network were of a tree-and-branch type. Then it can be
written that

< v
Yo(d) == :}“‘((i)) y  Yu(h)— f}/—l-";—?})')f(_l‘)‘ (127)

so that the polynomial defined by
#(2) = v,(D+Gr(d), | (128)

is a Hurwitz polynomial with a constant term 1, and hence

G-(1—a2) f(AY (129)

G =" aiyn(Za)
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Conversely, if G(A) has zeros only on the imaginary axis excluding
origin and on + 1, as shown in Eq. (129), then it is possible to make a
tree-and-branch network (in a broader sense) having such an even part.
Hére, if 4, the number of the cascade element is insufficien!:, YZZ(X) and
YIZ(X) may be determined after multiplying a factor (1= )\Z)s into the
numerator and the denominator of Eq. (129).

Now, make the even part from the given admittance, it may in general
be written in the following form

”
X a A

_— =0 .
G(4) == NI R (130)
where n{\ ) is a Hurwitz polynomial with a constant term 1 and its degree is not

smaller than n. Reexpand the numerator in terms of (1 - kz). one has

o= By

1=0 n(A) n(—1) (131)

It may be seen that this can be realized by a parallel connection of

simple open-branch networks, if all the coefficients b! is positive.

Even if some of b! are negative, they may be made positive, in most
cases, by Miyata's method of "degree ascending”. The method is as follows:
Let ¢(\) be a Hurwitz polynomial. Multiply ¢(\) ¢(~\) into the numerator and
the denominator of G(A ). Re-arrange the numerator in the form E . (131).
Choose ¢(\) so that all the coefficients come out positive. In practical
execution, it will be convenient to use x =1- XZ, and represent the numerator
in terms of X, and express also the polynomial ¢(\)¢(-\) as one in X with no
roots in x >1. Unfortunately, however, this method is not always applicable.
The necessary and sufficient condition of possibility of turning the coefficients
of polynomials into positive is, in general, that "the coefficient of the term
of the highest degree is positive, and the polynomial has no positive real
roots "14. The p-oof is simple, but not referred here. The above condition,
is stated in terms of A, says "G(\)has no zeros on the imaginary axis or

between +1 on the real axis. " Roots on the irpaginary axis may be expressed by
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admittance with no poles on the imaginary axis can be uniquely specified by
its even part, as the network theory says. Divide this even part into a

sum of a number of even functions, each of which satisfies the condition of the
even part of an admittance (that is, non-negative on the imaginary axis).
Then an admittance will be determined, for each of these, that has the
specified even part, with no poles on the imaginary axis. The sum (i.e.,

the parallel connection) of these admittances will be equal to the original,

from the uniqueness above stated.

The input admittance of a 4-terminal network with an admittance G at
the end is

Y() = Y,()~ '}}{'&()AEG ' {125)

and therefore its even part becomes

-1 _ =GYu(A)
G(‘) ’—‘2"{Y(1)+Y(“")} b Gz—Y”(l)’ ’ (126)
That is, G(\) is determined only by Yl'Z(X) and YZZ(X ). However, since
Y(\ ) has no poles on the imaginary axis, the residues of le and Y, , are
compact, and Yu(k) is determined necessarily from these. Now, suppose
the 4-terminal network were of a tree~and-branch type. Then it can be

written that

, _ n(d) _ (V1= f(2)
Yau(d) == ()’ Y (8) — - Ay 127)

so that the polynomial defined by
(2 = v,(D+Gm (D), (128)

is a Hurwitz polynomial with a constant term 1, and hence

G-(1—a) f(* (129)

G(‘.‘) ) CF S
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The network obtained is shown in Fig. 22 and its characteristic in

03070 09517  0.3070

Fig. 22. A bar filter

Fig. 23. The abscissa is taken in the frequency f itself, here and hereafter.

ANV 3 | )/1,

T/
/

2) A simple open-branch filter o5 7 7
w1=1. $=0.2 (bp: 0.8 db)
Number of shunt elements r=2
Number of cascade elements £=3  §§ = (1—10. 794114*—75. 797984*~270. 433134"
—355. 225224%—158. 3959641*) <~ (1—4*)3,

Myt (db)

Fig. 23. ordinate: Attenuation (db)

133b
1+12. 002554*+13. 014214° ( )

8.690884+34. 953594°+-25. 171092 *
The network is shown in Fig. 24. Adopt another sign of h(\) (i.e., the inverse

Yu(d) =

!.0286[ 1.0286

s A

03THL ozan o7l
Fig. 24. A simple open-~-branch filter (1)

network), then
yoa, . LF12. 0025500413, 01421
v A 3.107294-+6. 728742 (133¢)

and one obtains a network in Fig. 25. The characteristics of these are shown

/

W N\

1.9341 1.9341

0.7109  3.4008 0.7109

Fig. 25. A simple open branch filter (2)
re \



/

PIBMRI-1003-62 51
. o= -
in Fig' 26. [ T /

Mg Gt 1db)D

0

0 . ,02 /o.

Fig. 26. ordinate: Attenuation (db)
3) A tree-and-branch type filter

Cutoff wc=1, bp= 0.5 db
Minimum attenuation in stop band bs=50 db
Bandwidth factor ko> 0.75

These requirements are satisfy by taking n=6 and k=0.8.

BT RS R P 2, 0.6RIRY, L, 0 KT (
e e T 133d)
(RS L I A BTN JRETT

SS 1w

It should be noted that, upon taking out elements from the input admittance,
the effective figures decreases on and on, so that it is needed to take
sufficient decimal places at the beginning. This does not mean that 92,94, etc.,
should be determined precisely, but that, if they were once determined, the
error of calculation followed afterwards should be as small as possible.
In the above example, five zeros were supplemented after each effective
figures of 2, and 34. as if their effective figures were of 1l digits.

e Av AT '77.‘?;4345:"‘)722' F1TOORM Q0420
b1 HB19969149; | 1 (12014 466874

SO 2721127 10 TOMMY(HIHN), (133e)

ek --2%-1.16602 145154'—0. 31791 879871".

3606

An example of the network obtained is shown in Fig. 27. It is also

E e e |

05627 04197 03918 07437 08T
Fig. 27. A tree-and-branch filter

1.4522

0.7270 0.5316
1.7220

0.8296 0.
0.5311

0.1773

realizable in other order of transmission zeros. The characteristic is shown

in Fig. 28. Since, in this case, it contains 5 cascade elements a variety of



PIBMRI-1003-62 52
/
' - /
2 50
™ 40 -
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20
10
. o‘ .
forp fo
Fig. 28. ordinate: Attenuation (db)

networks will be obtained by multiplying g(\) by (1+\ )® (s<5) and h(\) by

(1-))°.

4) A tree-and-branch filter in a broader sense.

w1=1. bp= 0.4 db, bs= 33

db

SS =1+

200044 (424-0.87)*

(A*+2.25)* (22416)* '

g(4) = 1+2.13281874+2. 78139222*
+2.04910422° + 1. 242570544,
h(2) = 1.08076624%+1. 24226001°,

s Its configuration and characteristic are shown in Figs. 29 and 30.
5
0.6694 01674
02143 0.5640 40 " . i\
0.3294 0.0802 2 ]
3 v
02676 24046 0.4360 b I
o 20
Fig. 29. A tree-and-branch filter x [
in a broader sense 10
0
0

5) An example using the x-parameter

First, adopt a characteristic given in lumped networks.

w_=1, k=0.5 (consequently w,= 1/ v2)

§8 = 1-10, 57638

hn

Je

(133f)

Fig. 30. ordinate: Attenuation (db)

A(4*+0.888108)*

(0.3881084°+1)* *

(133g)

The network configuration is as shown in Fig. 31, but it can be changed
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0.6031
| P 03442
| 21348 |[1.55%9
{ :
: 0.5504 0.6558
] 3 .
a Fig. 31
i in a symmetrical one, Fig. 32, by multiplying g(\) by 1+4A and h(\) by 1-\.
) 0.3751
0.6577
0.6577
0.9666
aEETE 0.3423

I Fig. 32.

Their characteristic is shown in Fig. 33.

{7
.

i 50

40 11 /
3 /
® 30
s /
% 2

10

0
0 ]°/2 /o

Fig. 33. ordinate: Attenuation (db)

Here, let us make a network with the same transmission zero, where

the cascade elements have contributions to the characteristic.

o= Y0=05_
. (133h)
. o= (0.897T4542)* (1+2)(v/ TG +2)!
O T2y U~2) (/1.5 2"
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v from which one has

§ = . 1016.7740 (0. 163616)" (4%+0. 49596)" |
g 58 =1- (0. 38810847+ 1)% (1= A%y (133i)

) The network configuration is shown in Fig. 34, and its characteristic in

‘ 0.388]

2,2490
2.2490 2,1334

0.5241  0.5241
Fig. 34. Design by the x~parameter method

Fig. 35. One will see how the characteristic has been improved.

. o MW,
| g /
- i

20
' 10— / —
. /
0 Joly .fo

Fig. 35. ordinate: Attenuation (db)

6) A bar-type matching network

Let G1=1. G2=10. w
has 6§=0.0405 (minimum echo attenuation bt=14 db), and

171 and Tchebycheff behavior of n=3. Then one

3.025--0. 5742+ 3. 72044 —2* (133j)

58 = (=22’

The values of the three elements are 1.6347, 3.1623 and 6.1173 from
left to right. '

7) A simple short-branch matching network
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Given requirements are G =1, G,=10, w = 3 (f1=2£0/ 3) and §=0.01
(b =20 db).

‘n=2 will be sufficient for the requirements, so that one has

§§ - 10005 W2V W I 2ATV6 T, (133k)

The configuration for this case is that shown in Fig. 36, but upon

0.1852 13.1317

1. 10

1.6496 5.2165

Fig. 36. A simple short-branch matching network (1)

changing the position of taking out a shunt inductance, one will obtain a

network Fig. 37, in which the discrepancy of the element values is smaller

than the former to be more profitable in construction.

12.5459
0.8575

i~

1.8348 58022

Fig. 37. A simple short-branch matching network (2)

8. CONCLUSIONS

It has been described about the synthesis of distributed networks with
prescribed characteristics and also about approximation of the characteristics.
In specifying the characteristics, only operating transmission coefficients
were used, but it is also possible to specify them in terms of voltage
transmission coefficients, of current transmission coefficients or of image
parameters. In either case, one should obtain the Y-matrix or the input
impedance, and follow the synthesis in like manners. In Q‘hapter 6, it has
been described to determine a network for a specified even part of its admit-
tance. This is, in fact, of equal in effect to specify the voltage transmission

coefficient.
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In Chapter 5, the description was chiefly on low-pass filters, and only
the matching networks were discussed as high-pass filters, but it is also
possible to design high-pass filters with transmission zeros at finite
frequencies. Here the transmission zero at A =0 is necessarily simple, and
the network may be constructed with shunt inductances, unit loops and cascade
elements. The so-called high-pass filters become band-pass if used in the

second or higher modes. One should choose a type to fit his aim.

In Chapter 7, there are shownonly those that have wide bands. This is the
feature of the procedure. It was only possible to obtain narrow band ones
by simple methods hitherto known. On the contrary, a narrow band networks,
designed by the new method, would include elements of very large or very
small characteristic admittances leading to difficulty of construction. It
would be desirable to construct a network with all equal characteristic
admittance (with different lengths), but it would need a thoroughly different
system of theorem from that of this article.

In the last place, it should be taken into consideration that the junctions

of elements do not act as ideal ones, but the problem should be solved in
parallel with experiments.

The author expresses deep gratitude to Mr. Kiyasu, head of transmission
research section, for the thorough guidance provided.
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